Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Aug 1;67(1):257-65.
doi: 10.1111/j.1432-1033.1976.tb10657.x.

Polypeptide-chain elongation promoted by guanyl-5'-yl imidodiphosphate

Free article

Polypeptide-chain elongation promoted by guanyl-5'-yl imidodiphosphate

T Girbes et al. Eur J Biochem. .
Free article

Abstract

In a purified system from Escherichia coli containing ribosomes complexed with poly(uridylic acid) and N-acetyl-phenylalanyl-tRNA, the nonhydrolyzable analog of GTP, guanyl-5'-yl imidodiphosphate (Guo-5'-P2-NH-P), promotes polypeptide synthesis at a rate several times slower than GTP. The activity is completely dependent on elongation factors EF-T (i.e, EF-Ts + EF-Tu) and EF-G. Examination of individual steps of the elongation cycle in partial reactions shows that Guo-5'-P2-NH-P is as efficient as GTP in promoting the EF-T-dependent binding of phenylalanyl-tRNA to the ribosomal A site. In contrast, Guo-5'-P2-NH-P promotes the translocation-dependent binding of phenylalanyl-tRNA to a ribosome complexed with A-site-bound N-acetyl-phenylalanyl-tRNA much more slowly than GTP. This slow rate of binding is due to the presence of EF-G on the ribosome, and not to sluggish translocation, since (a) the rate remains slow even after translocation of N-acetylphenylalanyl-tRNA is completed, (b) it is greatly speeded up by removal of EF-G from the reaction mixture (after translocation has occurred), and (c) it is slowed down again by readdition of the factor. Moreover, with post-translocated ribosomes and in the absence of EF-G, formation of dipeptide subsequent to the EF-T-dependent binding of phenylalanyl-tRNA is much slower when binding of this substrate has been promoted by Guo-5'-P2-NH-P than it is when promoted by GTP. The results suggest that, during polymerization with Guo-5'-P2-NH-P, EF-G and EF-Tu are slowly released from the ribosome and, consequently, the steps of the elongation cycle subsequent to translocation and aminoacyl-tRNA binding (aminoacyl-tRNA binding and peptide bond formation, respectively) are delayed. Thus, durong elongation cycle, GTP hydrolysis is probably essential for fast release of the factors from the ribosome.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources