Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 Feb;52(2):159-71.
doi: 10.1016/0960-0760(94)00166-j.

In vivo and in vitro phosphorylation of the human estrogen receptor

Affiliations
Free article
Comparative Study

In vivo and in vitro phosphorylation of the human estrogen receptor

S F Arnold et al. J Steroid Biochem Mol Biol. 1995 Feb.
Free article

Abstract

We report here that the human estrogen receptor (hER) overexpressed in Sf9 insect cells is phosphorylated similarly to hER from the human MCF-7 mammary carcinoma cell line. The recombinant and native hER labeled to steady-state with [32P]phosphate were purified to homogeneity using specific DNA-affinity chromatography followed by SDS-gel electrophoresis. Resolution of the hER tryptic digests by reverse phase-high performance liquid chromatography revealed that five [32P]phosphopeptides from the hER expressed in the Sf9 cells had retention times identical to five of the seven [32P]phosphopeptides from the hER in MCF-7 cells. Uniquely, a dephosphorylation of a single 32P-labeled peptide occurred in response to estradiol treatment of MCF-7 cells. In vitro protein kinase assays with the purified recombinant hER revealed that the DNA-dependent protein kinase (DNA-PK) phosphorylated the receptor and induced a decrease in the receptor's mobility as demonstrated by SDS-gel electrophoresis. In contrast, protein kinases A and C did not phosphorylate the purified recombinant hER. These results suggest that in the process of becoming transcriptionally active the estrogen receptor undergoes a dephosphorylation after estrogen-binding and subsequent phosphorylations, in part by the DNA-PK.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources