Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Feb 28;34(8):2431-40.
doi: 10.1021/bi00008a005.

Human lysosomal beta-galactosidase-cathepsin A complex: definition of the beta-galactosidase-binding interface on cathepsin A

Affiliations

Human lysosomal beta-galactosidase-cathepsin A complex: definition of the beta-galactosidase-binding interface on cathepsin A

A V Pshezhetsky et al. Biochemistry. .

Abstract

Human lysosomal beta-galactosidase is organized as a 680-kDa complex with cathepsin A (also named carboxypeptidase L and protective protein), which is necessary to protect beta-galactosidase from intralysosomal proteolysis. To understand the molecular mechanism of beta-galactosidase protection by cathepsin A, we defined the structural organization of their complex including the beta-galactosidase-binding interface on cathepsin A. Radiation inactivation analysis suggested the existence of a 168-kDa structural subunit of the complex containing both beta-galactosidase and cathepsin A. Chemical cross-linking of the complex confirmed the existence of this subunit and showed that it is composed of one cathepsin A dimer and one beta-galactosidase monomer. The modeling of the cathepsin A dimer tertiary structure based on atomic coordinates of a wheat carboxypeptidase suggested a putative beta-galactosidase-binding cavity formed by the association of two cathepsin A monomers. According to this model two exposed loops of cathepsin A bordering the cavity were chosen as part of a putative beta-galactosidase-binding interface. Synthetic peptides corresponding to these loops were found both to dissociate the complex and to inhibit its in vitro reconstitution from purified cathepsin A and beta-galactosidase. The defined location of the GAL monomer in the complex with 35% of its surface covered by the CathA dimer may explain the stabilizing effect of CathA on GAL in lysosome.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources