Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1994 Nov;5(5 Suppl 1):S46-53.
doi: 10.1681/ASN.V55s46.

Urinary calcium oxalate crystal growth inhibitors

Affiliations
Review

Urinary calcium oxalate crystal growth inhibitors

E M Worcester. J Am Soc Nephrol. 1994 Nov.

Abstract

Calcium stones occur because renal tubular fluid and urine are supersaturated with respect to calcium oxalate and phosphate. The process of stone formation includes crystal nucleation, growth, aggregation, and attachment to renal epithelia. Urine contains macromolecules that modify these processes and may protect against stone formation. Attention has focused especially on inhibitors of crystal growth, and several have been isolated from urine, including nephrocalcin, an acidic phosphorylated glycoprotein that contains several residues of gamma-carboxyglutamic acid per molecule; osteopontin (uropontin), a phosphorylated glycoprotein also found in bone matrix; uronic acid-rich protein, which contains a covalently bound glycosaminoglycan residue; and several others. Abnormalities in structure and/or function have been detected in some of these proteins in stone formers' urine. However, the overall ability of urinary macromolecules to inhibit calcium oxalate crystal growth is often normal in stone formers. Recently, attention has been focused on the ability of these molecules to inhibit other stages in stone formation. Nephrocalcin can inhibit crystal nucleation, for example, and both nephrocalcin and Tamm-Horsfall protein inhibit crystal aggregation. Nephrocalcin and Tamm-Horsfall protein from stone formers are less active in preventing aggregation, and under some conditions, Tamm-Horsfall protein may promote the formation of crystal aggregates, especially in the presence of high concentrations of calcium. The structural abnormalities responsible for impaired inhibitory activity are not completely understood.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources