Neuronal, non-neuronal and hybrid forms of enolase in brain: structural, immunological and functional comparisons
- PMID: 78744
- DOI: 10.1016/0006-8993(78)90657-1
Neuronal, non-neuronal and hybrid forms of enolase in brain: structural, immunological and functional comparisons
Abstract
Three forms of the glycolytic enzyme, enolase [2-phospho-D-glycerate hydrolase (E.C. No. 4.2.1.11)] have been prepared from rat whole brain extract. The most acidic enolase form is neuron specific enolase (NSE) which had previously been designated neuron specific protein (NSP). The least acidic form designated non-neuronal enolase (NNE) has been purified and compared structurally, immunologically and functionally to NSE. NNE is a dimer of 86,500 M.W. consistint of two very similar subunits. The data establish that NNE is larger than NSE which has been shown to be composed of two apparently identical 39,000 molecular weight subunits (78,000). NNE is less acidic than NSE having a pI of 5.9 compared to the value of 4.7 for NSE. Structural and immunological analysis establishes that the NNE subunit is distinct from the NSE subunit, and are therfore products of two separate genes. The structural designation of NSE is (gammagamma) and that of NNE (alpha' alpha'). NSE is strictly localized in neurons indicating that the gene coding for the gamma subunit is only expressed in neuronal cells. The intermediate brain enolase form has been partially purified; structural and immunological evidence indicate that it is a hybrid molecule consisting of one NNE subunit and one NSE subunit (alpha'gamma).
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
