Radionuclide targeting and dosimetry at the microscopic level: the role of microautoradiography
- PMID: 7875174
- DOI: 10.1007/BF02426701
Radionuclide targeting and dosimetry at the microscopic level: the role of microautoradiography
Abstract
The understanding of localisation mechanisms and microdosimetry of diagnostic and therapeutic radiopharmaceuticals depends on knowledge of their biodistribution at the microscopic level (cellular and subcellular) in the target tissues. Various methods have been advanced for obtaining information about this microdistribution: subcellular fractionation, secondary ion mass spectrometry imaging, microprobe elemental analysis in the electron microscope, and microautoradiography. This review compares these approaches, and discusses in detail the methodology of microautoradiography (the most generally useful approach) with imaging and therapy radionuclides. Literature examples of applications of microautoradiography in nuclear medicine are reviewed, and the future potential contribution of the techniques is assessed.
Similar articles
-
Methods and techniques for in vitro subcellular localization of radiopharmaceuticals and radionuclides.Nucl Med Biol. 2021 Jul-Aug;98-99:18-29. doi: 10.1016/j.nucmedbio.2021.03.010. Epub 2021 Apr 22. Nucl Med Biol. 2021. PMID: 33964707 Free PMC article. Review.
-
Frozen section microautoradiography in the study of radionuclide targeting: application to indium-111-oxine-labeled leukocytes.J Nucl Med. 1995 Mar;36(3):499-505. J Nucl Med. 1995. PMID: 7884517
-
Drugs in the brain--cellular imaging with receptor microscopic autoradiography.Prog Histochem Cytochem. 2012 Mar;47(1):1-26. doi: 10.1016/j.proghi.2011.12.001. Epub 2012 Jan 10. Prog Histochem Cytochem. 2012. PMID: 22240062 Review.
-
Dosimetric characterization of radionuclides for systemic tumor therapy: influence of particle range, photon emission, and subcellular distribution.Med Phys. 2006 Sep;33(9):3260-9. doi: 10.1118/1.2229428. Med Phys. 2006. PMID: 17022220
-
Radiation dosimetry in nuclear medicine.Appl Radiat Isot. 1999 Jan;50(1):73-87. doi: 10.1016/s0969-8043(98)00023-2. Appl Radiat Isot. 1999. PMID: 10028629 Review.
Cited by
-
Single-cell radioluminescence microscopy with two-fold higher sensitivity using dual scintillator configuration.PLoS One. 2020 Jul 7;15(7):e0221241. doi: 10.1371/journal.pone.0221241. eCollection 2020. PLoS One. 2020. PMID: 32634153 Free PMC article.
-
Multiscale Framework for Imaging Radiolabeled Therapeutics.Mol Pharm. 2015 Dec 7;12(12):4554-60. doi: 10.1021/acs.molpharmaceut.5b00392. Epub 2015 Nov 5. Mol Pharm. 2015. PMID: 26460685 Free PMC article.
-
Modular low-light microscope for imaging cellular bioluminescence and radioluminescence.Nat Protoc. 2017 May;12(5):1055-1076. doi: 10.1038/nprot.2017.008. Epub 2017 Apr 20. Nat Protoc. 2017. PMID: 28426025 Free PMC article.
-
Subcellular Targeting of Theranostic Radionuclides.Front Pharmacol. 2018 Sep 4;9:996. doi: 10.3389/fphar.2018.00996. eCollection 2018. Front Pharmacol. 2018. PMID: 30233374 Free PMC article. Review.
-
Radiation doses from 161Tb and 177Lu in single tumour cells and micrometastases.EJNMMI Phys. 2020 May 19;7(1):33. doi: 10.1186/s40658-020-00301-2. EJNMMI Phys. 2020. PMID: 32430671 Free PMC article.