Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1976 Jun 30;27(4):317-34.
doi: 10.1007/BF01869143.

Optical probes of membrane potential

Review

Optical probes of membrane potential

A Waggoner. J Membr Biol. .

Abstract

There are two basically different mechanisms for the fluorescence and absorption changes of merocyanine, cyanine and oxonol dyes. The permeant dyes (cyanine and oxonol dyes, with delocalized charges) work by a potential-dependent accumulation mechanism. These dyes show large (up to 80%) fluorescence and absorption changes with suspensions of cells, and the changes are complete in seconds. The impermeant dyes (merocyanine dyes, with localized charges) and the permeant dyes also show optical changes that take place in fractions of milliseconds. The rapid optical changes are relatively small (less than or equal to 5 X 10(-3)) but can often be easily detected in experiments with single cells. The rapid, nonaccumulative, optical changes result from membrane-localized dye movements. Cyanine dye-absorption changes occur because of a potential-dependent partition of dye between the membrane and the adjacent aqueous region at the high dye-concentration side of the membrane. Dimers and larger aggregates are formed in the aqueous region during the change. Merocyanine dyes may also work by the same mechanism. DiS-C3-(5) is presently the best dye for measuring membrane potentials of cells, organelles, and vesicles in suspension, but several other cyanines work nearly as well (P.J. Sims, A.S. Waggoner, C.-H. Wang, J.F. Hoffman, Biochemistry 13:3315, 1974). For each system, the ratio of dye to membrane must be varied until the optimum fluorescence change is found. A separate calibration curve must be obtained for each system. For measuring fluorescence and/or absorption changes in single cells, merocyanine 540 and diBA-C4-(5) work well but produce some photodynamic damage with high intensity illumination. A rhodanine merocyanine (WW-375) gives very large absorption changes and does not damage tissue during strong illumination. As the mechanisms of the optical changes are worked out, it should be possible to design and synthesize more sensitive, less toxic dyes that are easier to calibrate. And, as the mechanisms of the optical changes are worked out, these dyes may be useful for studying the structure and dynamics of excitable membranes.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Proc Natl Acad Sci U S A. 1974 Feb;71(2):583-5 - PubMed
    1. Nature. 1973 Dec 21-28;246(5434):508-9 - PubMed
    1. Eur J Biochem. 1973 May 2;34(3):577-85 - PubMed
    1. Science. 1976 Feb 6;191(4226):485-7 - PubMed
    1. J Physiol. 1974 Jun;239(3):519-52 - PubMed

Substances

LinkOut - more resources