Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Aug 27;28(1):87-119.
doi: 10.1007/BF01869692.

Permeability of a cell junction and the local cytoplasmic free ionized calcium concentration: a study with aequorin

Permeability of a cell junction and the local cytoplasmic free ionized calcium concentration: a study with aequorin

B Rose et al. J Membr Biol. .

Abstract

A technique is devised to determine the spatial distribution of the free ionized cytoplasmic calcium concentration ([Ca2+]i) inside a cell: Chironomus salivary gland cells are loaded with aequorin, and hte Ca2+-dependent light emission of the aequorin is scanned with an image-intensifier/television system. With this technique, the [Ca2+]i is determined simultaneously with junctional electrical coupling when Ca2+ is microinjected into the cells, or when the cells are exposed to metabolic inhibitors, Ca-transporting ionophores, or Ca-free medium. Ca microinjections elevating the [Ca2+]i in the junctional locale produce depression of junctional membrane conductance. When the [Ca2+]i elevation is confined to the vicinity of one cell junction, the conductance of that junction alone is depressed; other junctions of the same cell are not affected. The depression sets in as the [Ca2+]i rises in the junctional locale, and reverses after the [Ca2+]i falls to baseline. When the [Ca2+]i elevation is diffuse throughout the cell, the conductances of all junctions of the cell are depressed. The Ca injections produce no detectable [Ca2+]i elevations in cells adjacent to the injected one; the Ca-induced change in junctional membrane permeability seems fast enough to block appreciable transjunctional flow of Ca2+. Control injections of Cl- or K+ do not affect junctional conductance. The Ca injections that elevate [Ca2+]i sufficiently to depress junctional conductance also produce under the usual conditions an increase in nonjunctional membrane conductance and, hence, depolarization. But injections that elevate [Ca2+]i at the junction while largely avoiding nonjunctional membrane cause depression of junctional conductance with little or no depolarization. Moreover, elevations of [Ca2+]i in cells clamped near resting potential produce the depression, too. On the other hand, complete depolarization in K medium does not produce the depression, unless accompanied by [Ca2+]i elevation. Thus, the depolarization is neither necessary nor sufficient for depression of junctional conductance. Treatment with cyanide, dinitrophenol and ionophores X537A or A23187 produces diffuse elevation of [Ca2+]i associated with depression of junctional conductance. Prolonged exposure to Ca-free medium leads to fluctuation in [Ca2+]i where rise and fall of [Ca2+]i correlate respectively with fall and rise in junctional conductance.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Cell Biol. 1967 May;33(2):235-42 - PubMed
    1. J Physiol. 1972 Dec;227(3):855-74 - PubMed
    1. Adv Enzymol Relat Areas Mol Biol. 1967;29:259-320 - PubMed
    1. Cold Spring Harb Symp Quant Biol. 1976;40:49-63 - PubMed
    1. FEBS Lett. 1972 May 15;22(3):273-276 - PubMed

Publication types

LinkOut - more resources