Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Feb 24;270(8):3611-8.
doi: 10.1074/jbc.270.8.3611.

Identification of the potential active site of the signal peptidase SipS of Bacillus subtilis. Structural and functional similarities with LexA-like proteases

Affiliations
Free article

Identification of the potential active site of the signal peptidase SipS of Bacillus subtilis. Structural and functional similarities with LexA-like proteases

J M van Dijl et al. J Biol Chem. .
Free article

Abstract

Signal peptidases remove signal peptides from secretory proteins. By comparing the type I signal peptidase, SipS, of Bacillus subtilis with signal peptidases from prokaryotes, mitochondria, and the endoplasmic reticular membrane, patterns of conserved amino acids were discovered. The conserved residues of SipS were altered by site-directed mutagenesis. Replacement of methionine 44 by alanine yielded an enzyme with increased activity. Two residues (aspartic acid 146 and arginine 84) appeared to be conformational determinants; three other residues (serine 43, lysine 83, and aspartic acid 153) were critical for activity. Comparison of SipS with other proteases requiring serine, lysine, or aspartic acid residues in catalysis revealed sequence similarity between the region of SipS around serine 43 and lysine 83 and the active-site region of LexA-like proteases. Furthermore, self-cleavage sites of LexA-like proteases closely resembled signal peptidase cleavage sites. Together with the finding that serine and lysine residues are critical for activity of the signal peptidase of Escherichia coli (Tschantz, W.R., Sung, M., Delgado-Partin, V.M., and Dalbey, R.E. (1993) J. Biol. Chem. 268, 27349-27354), our data indicate that type I signal peptidases and LexA-like proteases are structurally and functionally related serine proteases. A model envisaging a catalytic serine-lysine dyad in prokaryotic type I signal peptidases is proposed to accommodate our observations.

PubMed Disclaimer

Publication types

Associated data

LinkOut - more resources