Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Feb 10;89(1):7-14.
doi: 10.1016/0304-3835(95)90151-5.

Tumor-conditioned medium increases macromolecular permeability of endothelial cell monolayer

Affiliations

Tumor-conditioned medium increases macromolecular permeability of endothelial cell monolayer

N Utoguchi et al. Cancer Lett. .

Abstract

The permeation of macromolecular FITC-labeled dextran (molecular weight 70,000) through bovine aortic endothelial cells (BAEC) monolayer, which were cultured for 5 days with conditioned medium prepared from mouse melanoma B16, was increased. However, when BAEC, which were cultured with normal medium until confluent, were treated with B16 conditioned medium (B16-CM) for 30 min, the permeability did not increase. The B16-CM also increased the permeability of the endothelial monolayers of bovine veins and the human umbilical vein, but did not increase that of the epithelial monolayer. The B16-CM did not alter the distribution or content of F-actin on the BAEC. BAEC cultured in the presence of B16-CM for 5 days were detached from the dish, and then seeded into a chamber at one-fifth of confluent cell density. After 5 days of culture in normal medium, the BAEC were grown to confluence and their permeability was increased. These findings suggest that B16-CM increased the endothelial permeability irreversibly without the decrease of F-actin, and that soluble factor(s) which were secreted from the tumor cells participate in the construction of the hyperpermeable structure of tumor vessels in vivo.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources