Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Oct 20;76(2-3):215-24.
doi: 10.1016/0047-6374(94)91595-4.

Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice

Affiliations

Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice

R S Sohal et al. Mech Ageing Dev. .

Abstract

The objective of this study was to explore the role of molecular oxidative damage and caloric intake in the aging process. The concentration of 8-hydroxydeoxyguanosine (8-OHdG), a product of DNA oxidation, was compared in five different tissues of mice (skeletal muscle, brain, heart, liver and kidney) as a function of age and in response to dietary restriction. A comparison of 8- and 27-month-old mice indicated that the age-related increase in 8-OHdG concentration was greater in skeletal muscle, brain and heart, which are primarily composed of long-lived, post-mitotic cells, than in liver and kidney, which consist of slow-dividing cells. Dietary restricted (DR) mice kept on 60% caloric intake as compared to the ad libitum-fed (AL) mice showed a lower concentration in 8-OHdG content in all the tissues compared to AL mice. The DR-related amelioration of DNA oxidative damage was greater in the post-mitotic tissues compared to those undergoing slow mitoses. Results support the hypothesis that oxidative damage to long-lived post-mitotic cells may be a key factor in the aging process.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources