Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Oct 4;447(2):175-87.
doi: 10.1016/0005-2787(76)90341-5.

Escherichia coli DNA polymerases II and III: activation by magnesium or by manganous ions

Escherichia coli DNA polymerases II and III: activation by magnesium or by manganous ions

W B Helfman et al. Biochim Biophys Acta. .

Abstract

Escherichia coli DNA polymerases II and III have been extensively studied in vitro when activated with Mg2+. The Mn2+-activated polymerization reactions are considered here, and shown to differ from the Mg2+-activated reactions. The Mn2+-activated DNA polymerase II reaction requires K+ or spermidine, and the effects of monovalent cation and polyamine are additive. In contrast, the Mg2+-activated reaction does not require, but is stimulated by, K+ or spermidine, in a non-additive manner. Under optimal conditions, DNA polymerase II is activated better with Mn2+ than it is with Mg2+, suggesting a physiological role for the Mn2+-activated enzyme. The observed preference for Mn2+ over Mg2+ in reaction kinetics and at high DNA template concentrations suggest that Mg2+ may preferentially activate the associated exonuclease activity. At 29 degrees C, the Mn2+-activated DNA polymerase III reaction is stimulated by K+ and inhibited by ethanol or phosphatidylethanolamine. In contrast, the latter compounds and Triton X-100 increase the initial rate of the Mg2+-activated reaction, whereas K+ inhibits this reaction at all concentrations. The K+ inhibition is reduced at low Mg concentrations when Mn2+ is also present. After stimulating the initial reaction rate, ethanol causes a rapid decrease in the rate of the Mg2+-activated reaction during incubation at 20 degrees C. At 27 degrees C, all surface-active compounds inhibit the Mg2+-activated reaction. Preincubation of the enzyme at 30 degrees C or below with DNA template and divalent cation increases the initial reaction rate, suggesting that formation of an enzyme-divalent cation-DNA template complex occurs as the first step in DNA polymerase III catalysis. The apparent Km at 21 degrees C for gapped calf thymus DNA was 25 muM with Mn2+ and 125 muM with Mg2+ for DNA polymerase III, and 18 muM at 30 degrees C for DNA polymerase II with either Mn2+ or Mg2+. Reactions with poly[d(A-T)] were enhanced by Mn2+ relative to Mg2+, and activity with poly(rA)-poly(dT) was Mn2+ dependent for both enzymes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources