Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1995 Jan;16(1):53-75.
doi: 10.1111/j.1574-6976.1995.tb00155.x.

Amino acid transporters of lower eukaryotes: regulation, structure and topogenesis

Affiliations
Review

Amino acid transporters of lower eukaryotes: regulation, structure and topogenesis

V Sophianopoulou et al. FEMS Microbiol Rev. 1995 Jan.

Abstract

Lower eukaryotes such as the yeast Saccharomyces cerevisiae and the filamentous fungus Aspergillus nidulans possess a multiplicity of amino acid transporters or permeases which exhibit different properties with respect to substrate affinity, specificity, capacity and regulation. Regulation of amino acid uptake in response to physiological conditions of growth is achieved principally by a dual mechanism; control of gene expression, mediated by a complex interplay of pathway-specific and wide-domain transcription regulatory proteins, and control of transport activities, mediated by a series of protein factors, including a kinase, and possibly, by amino acids. All fungal and a number of bacterial amino acid permeases show significant sequence similarities (33-62% identity scores in binary comparisons), revealing a unique transporter family conserved across the prokaryotic-eukaryotic boundary. Prediction of the topology of this transporter family utilizing a multiple sequence alignment strongly suggests the presence of a common structural motif consisting of 12 alpha-helical putative transmembrane segments and cytoplasmically located N- and C-terminal hydrophilic regions. Interestingly, recent genetic and molecular results strongly suggest that yeast amino acid permeases are integrated into the plasma membrane through a specific intracellular translocation system. Finally, speculating on their predicted structure and on amino acid sequence similarities conserved within this family of permeases reveals regions of putative importance in amino acid transporter structure, function, post-translational regulation or biogenesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources