Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Dec;58(2):95-100.
doi: 10.1046/j.1432-0436.1995.5820095.x.

Metabolic pathways for differentiation-inducing factor-1 and their regulation are conserved between closely related Dictyostelium species, but not between distant members of the family

Affiliations

Metabolic pathways for differentiation-inducing factor-1 and their regulation are conserved between closely related Dictyostelium species, but not between distant members of the family

S van Es et al. Differentiation. 1994 Dec.

Abstract

There is suggestive evidence that a conserved signalling system involving differentiation inducing factor-1 (DIF-1) controls stalk cell differentiation in a variety of slime mould species. In the standard laboratory species, Dictyostelium discoideum, DIF-1 is first inactivated by dechlorination catalysed by DIF-1 dechlorinase, then by several hydroxylation events, so that eventually about 12 metabolites are produced. If DIF-1 is used as a signal molecule in other species, they too must be able to metabolize it. We report here that the essentials of DIF-1 metabolism are conserved in D. mucoroides, the closest relative of D. discoideum. Both the dechlorinase and hydroxylase enzymes were present in D. mucoroides, and living cells of both species produced a similar spectrum of metabolites from [3H]DIF-1. Furthermore, DIF-1 dechlorinase was induced by DIF-1, as in D. discoideum, and this induction was repressed by ammonia and cAMP. DIF-1 dechlorinase could not be detected in cell extracts from D. minutum or Polysphondylium violaceum. However, living cells of both species are able to metabolize DIF-1; P. violaceum seems to produce a small amount of the monodechlorinated compound, DIF-3, but all other metabolites from both species appear to be unique. Thus all investigated species can metabolize DIF-1, but the exact route of metabolism is not highly conserved.

PubMed Disclaimer

Publication types

Substances