Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 Mar 17;270(11):5742-7.
doi: 10.1074/jbc.270.11.5742.

Lipid-mediated regulation of G protein-coupled receptor kinases 2 and 3

Affiliations
Free article
Comparative Study

Lipid-mediated regulation of G protein-coupled receptor kinases 2 and 3

S K DebBurman et al. J Biol Chem. .
Free article

Abstract

G protein-coupled receptor-mediated signaling is attenuated by a process referred to as desensitization, wherein agonist-dependent phosphorylation of receptors by G protein-coupled receptor kinases (GRKs) is proposed to be a key initial event. However, mechanisms that activate GRKs are not fully understood. In one scenario, beta gamma-subunits of G proteins (G beta gamma) activate certain GRKs (beta-adrenergic receptor kinases 1 and 2, or GRK2 and GRK3), via a pleckstrin homology domain in the COOH terminus. This interaction has been proposed to translocate cytosolic beta-adrenergic receptor kinases (beta ARKs) to the plasma membrane and facilitate interaction with receptor substrates. Here, we report a novel finding that membrane lipids modulate beta ARK activity in vitro in a manner that is analogous and competitive with G beta gamma. Several lipids, including phosphatidylserine (PS), stimulated, whereas phosphatidylinositol 4,5-bisphosphate inhibited, the ability of these GRKs to phosphorylate agonist-occupied m2 muscarinic acetylcholine receptors. Furthermore, both PS and phosphatidylinositol 4,5-bisphosphate specifically bound to beta ARK1, whereas phosphatidylcholine, a lipid that did not modulate beta ARK activity, did not bind to beta ARK1. The lipid regulation of beta ARKs did not occur via a modulation of its autophosphorylation state. PS- and G beta gamma-mediated stimulation of beta ARK1 was compared and found strikingly similar; moreover, their effects together were not additive (except at initial stages of reaction), which suggests that PS and G beta gamma employed a common interaction and activation mechanism with the kinase. The effects of these lipids were prevented by two well known G beta gamma-binding proteins, phosducin and GST-beta ARK-(466-689) fusion protein, suggesting that the G beta gamma-binding domain (possibly the pleckstrin homology domain) of the GRKs is also a site for lipid:protein interaction. We submit the intriguing possibility that both lipids and G proteins co-regulate the function of GRKs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources