Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 Mar 17;270(11):6088-99.
doi: 10.1074/jbc.270.11.6088.

Primary structure of CD52

Affiliations
Free article
Comparative Study

Primary structure of CD52

A Treumann et al. J Biol Chem. .
Free article

Abstract

The CD52 antigen was extracted from human spleens with organic solvents and purified by immunoaffinity and reverse-phase chromatography. The latter step resolved two CD52 species, called CD52-I and CD52-II. Both species were found to contain similar N-linked oligosaccharides and glycosylphosphatidylinositol (GPI) anchor glycans. The N-linked oligosaccharides were characterized by methylation linkage analysis and, following exhaustive neuraminidase and endo-beta-galactosidase digestion, by the reagent array analysis method. The results showed that the single CD52 N-glycosylation site is occupied by large sialylated, polylactosamine-containing, core-fucosylated tetraantennary oligosaccharides. The locations of the phosphoryl substituents on the GPI anchor glycan were determined using a new and sensitive method based upon partial acid hydrolysis of the GPI glycan. The difference between CD52-I and CD52-II was in the phosphatidylinositol (PI) moieties of the GPI anchors. The phosphatidylinositol-specific phospholipase C-sensitive CD52-I contained exclusively distearoyl-PI, while the PI-phospholipase C-resistant CD52-II contained predominantly a palmitoylated stearoyl-arachidonoyl-PI, as judged by electrospray ionization mass spectrometry. Tandem mass spectrometric studies indicated that the palmitoyl residue of the CD52-II anchor is attached to the 2-position of the myo-inositol ring. Both the CD52-I and CD52-II PI structures are unusual for GPI anchors and the possible significance of this is discussed. The alkali-lability of the CD52 epitope recognized by the Campath-1H monoclonal antibody was studied. The data suggest that the alkali-labile hydroxyester-linked fatty acids of the GPI anchor are necessary for antibody binding.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources