Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Apr;23(4):369-75.

Mechanistic options of erythropoietin-stimulated erythropoiesis

Affiliations
  • PMID: 7895784

Mechanistic options of erythropoietin-stimulated erythropoiesis

W Nijhof et al. Exp Hematol. 1995 Apr.

Abstract

The in vivo mechanism of hematopoietic growth factor-induced cell multiplication is in debate. Several options can be examined: 1) growth factors can reduce the cycling time of their dividing target cells, 2) growth factors can add extra cell divisions within the differentiation pathway, 3) the combination of the first two possibilities, and 4) growth factors can prevent premature cell death (apoptosis) from occurring in the absence of the stimulating factor. We studied these options in vitro and in vivo in the murine erythroid pathway. Results from in vitro cultures of purified splenic colony-forming units-erythroid (CFU-E), with and without erythropoietin (Epo), and in vivo Epo treatments of thiamphenicol (TAP)-pretreated mice showed neither reduction in cycle times nor addition of extra cell divisions in the differentiating erythroid lineage. The phenomenon of apoptosis was demonstrated as time- and Epo-dependent in vitro with electrophoretic (DNA-ladder), flow-cytometric (subdiploid cells), and morphologic (fragmented nuclei) methods applied on CFU-E. A high dose of Epo administered to mice caused a rapid transient rise in the number of CFU-E to 350% of normal. Early erythroblasts also increased, whereas burst-forming unit-erythroid (BFU-E) numbers did not change. Our results favor a mechanism in which Epo acts as a survival factor for early erythroid cells (CFU-E and early erythroblasts) in vitro, as well as in vivo, preventing apoptosis.

PubMed Disclaimer

Publication types

LinkOut - more resources