Common structure of the catalytic sites of mammalian and bacterial toxin ADP-ribosyltransferases
- PMID: 7898462
- DOI: 10.1007/BF00928460
Common structure of the catalytic sites of mammalian and bacterial toxin ADP-ribosyltransferases
Abstract
The amino acid sequences of several bacterial toxin ADP-ribosyltransferases, rabbit skeletal muscle transferases, and RT6.2, a rat T-cell NAD glycohydrolase, contain three separate regions of similarity, which can be aligned. Region I contains a critical histidine or arginine residue, region II, a group of closely spaced aromatic amino acids, and region III, an active-site glutamate which is at times seen as part of an acidic amino acid-rich sequence. In some of the bacterial ADP-ribosyltransferases, the nicotinamide moiety of NAD has been photo-crosslinked to this glutamate, consistent with its position in the active site. The similarities within these three regions, despite an absence of overall sequence similarity among the several transferases, are consistent with a common structure involved in NAD binding and ADP-ribose transfer.
Similar articles
-
Conservation of a common motif in enzymes catalyzing ADP-ribose transfer. Identification of domains in mammalian transferases.J Biol Chem. 1995 Jan 13;270(2):541-4. doi: 10.1074/jbc.270.2.541. J Biol Chem. 1995. PMID: 7822277
-
The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases.Int J Med Microbiol. 2002 Feb;291(6-7):523-9. doi: 10.1078/1438-4221-00162. Int J Med Microbiol. 2002. PMID: 11890553 Review.
-
Characterization of mammalian ADP-ribosylation cycles.Biochimie. 1995;77(5):319-25. doi: 10.1016/0300-9084(96)88141-7. Biochimie. 1995. PMID: 8527484 Review.
-
Mouse T cell membrane proteins Rt6-1 and Rt6-2 are arginine/protein mono(ADPribosyl)transferases and share secondary structure motifs with ADP-ribosylating bacterial toxins.J Biol Chem. 1996 Mar 29;271(13):7686-93. doi: 10.1074/jbc.271.13.7686. J Biol Chem. 1996. PMID: 8631807
-
Molecular cloning and characterization of lymphocyte and muscle ADP-ribosyltransferases.Adv Exp Med Biol. 1997;419:129-36. doi: 10.1007/978-1-4419-8632-0_15. Adv Exp Med Biol. 1997. PMID: 9193645
Cited by
-
Structural basis of actin recognition and arginine ADP-ribosylation by Clostridium perfringens iota-toxin.Proc Natl Acad Sci U S A. 2008 May 27;105(21):7399-404. doi: 10.1073/pnas.0801215105. Epub 2008 May 19. Proc Natl Acad Sci U S A. 2008. PMID: 18490658 Free PMC article.
-
Role of the dinitrogenase reductase arginine 101 residue in dinitrogenase reductase ADP-ribosyltransferase binding, NAD binding, and cleavage.J Bacteriol. 2001 Jan;183(1):250-6. doi: 10.1128/JB.183.1.250-256.2001. J Bacteriol. 2001. PMID: 11114923 Free PMC article.
-
Structure of the catalytic fragment of poly(AD-ribose) polymerase from chicken.Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7481-5. doi: 10.1073/pnas.93.15.7481. Proc Natl Acad Sci U S A. 1996. PMID: 8755499 Free PMC article.
-
Vibrio fischeri genes hvnA and hvnB encode secreted NAD(+)-glycohydrolases.J Bacteriol. 2001 Jan;183(1):309-17. doi: 10.1128/JB.183.1.309-317.2001. J Bacteriol. 2001. PMID: 11114931 Free PMC article.
-
Role of brefeldin A-dependent ADP-ribosylation in the control of intracellular membrane transport.Mol Cell Biochem. 1999 Mar;193(1-2):43-51. Mol Cell Biochem. 1999. PMID: 10331637