Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Mar;268(3 Pt 2):R605-13.
doi: 10.1152/ajpregu.1995.268.3.R605.

Regulation of electrogenic Na+ transport across leech skin

Affiliations

Regulation of electrogenic Na+ transport across leech skin

W M Weber et al. Am J Physiol. 1995 Mar.

Abstract

The dorsal integument of the medical leech Hirudo medicinalis exhibits a marked amiloride-sensitive Na+ absorption. With 20 mM Na+ in the apical solution, the transepithelial short-circuit current (Isc) was approximately 40% higher than with 115 mM Na+, whereas the transepithelial potential (VT) with 20 mM Na+ was -35.7 +/- 4.5 and -20.6 +/- 2.6 mV with 115 mM Na+. Amiloride (100 microM) inhibition at 20 mM apical Na+ was also significantly larger than with 115 mM Na+ in the solution. Benzamil (100 microM) showed additional inhibition after amiloride. Large transient overshooting currents occurred only when 115 mM Na+ was added after some minutes of Na(+)-free apical solution. Addition of adenosine 3',5'-cyclic monophosphate (cAMP) to the serosal side in the presence of 115 mM apical Na+ nearly doubled Isc. This cAMP effect was reduced to only 20% in the presence of 20 mM Na+. Guanosine 3',5'-cyclic monophosphate (cGMP) slightly increased Isc, whereas ATP showed biphasic potency. Removal of calcium from the apical side resulted in a large stimulation of amiloride-sensitive Isc only in the presence of 115 mM Na+. When currents were activated with cAMP, a deprivation of Ca2+ modestly reduced the amiloride-sensitive Isc. The Na+ channel of leech integument was found highly selective for Na+ over other monovalent cations. The permeability ratio for Na+ over K+ was approximately 30:1; the selectivity relationship for the investigated cations was Na+ > Li+ > NH4+ > K+ approximately Cs+ approximately Rb+.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources