Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Mar;268(3 Pt 2):R683-9.
doi: 10.1152/ajpregu.1995.268.3.R683.

Effects of input pressure on in vitro turtle heart during anoxia and acidosis: a 31P-NMR study

Affiliations

Effects of input pressure on in vitro turtle heart during anoxia and acidosis: a 31P-NMR study

D C Jackson et al. Am J Physiol. 1995 Mar.

Abstract

In vitro working hearts of the turtle, Chrysemys picta bellii, paced at 30 beats/min, were studied over a range of input pressures in the following sequence of perfusion conditions: control normoxia, control anoxia, lactacidotic normoxia, and lactacidotic anoxia. Two such series of experiments were performed. In series 1 (n = 12), ventricular pressure (PV) and cardiac output were measured, and power output and dPV/dt were calculated. In series 2 (n = 5), intracellular phosphorus metabolites and intracellular pH (pHi) were also measured using 31P-nuclear magnetic resonance (31P-NMR) spectroscopy. In series 1 all mechanical variables increased with input pressure in generally similar fashion, except during anoxic acidosis, during which mechanical performance was depressed and was increased less or not at all by input pressure. Creatine phosphate (CP) and pHi fell significantly in anoxia and anoxic acidosis, but neither these variables, ATP, CP/ATP, nor, presumably, ADP changed as a function of input pressure with any perfusate despite often large increments in mechanical output. We conclude that anoxia and acidosis act synergistically to depress cardiac function in turtle hearts. Also, the insensitivity of NMR variables to changes in input pressure and cardiodynamics suggests that changes in these variables are unimportant for controlling energy turnover in this preparation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources