Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1993 Aug;9(4):687-94.
doi: 10.1111/j.1365-2958.1993.tb01729.x.

Bacterial proteins binding to the mammalian extracellular matrix

Affiliations
Review

Bacterial proteins binding to the mammalian extracellular matrix

B Westerlund et al. Mol Microbiol. 1993 Aug.

Abstract

Pathogenic bacteria frequently express surface proteins with affinity for components of the mammalian extracellular matrix, i.e. collagens, laminin, fibronectin or proteoglycans. This review summarizes our current knowledge on the mechanisms of bacterial adherence to extracellular matrices and on the biological significance of these interactions. The best-characterized bacterial proteins active in these interactions are the mycobacterial fibronectin-binding proteins, the fibronectin- and the collagen-binding proteins of staphylococci and streptococci, specific enterobacterial fimbrial types, as well as the polymeric surface proteins YadA of yersinias and the A-protein of Aeromonas. Some of these bacterial proteins are highly specific for an extracellular matrix protein, some are multifunctional and express binding activities towards a number of target proteins. The interactions can be based on a protein-protein or on a protein-carbohydrate interaction, or on a bridging mechanism mediated by a bivalent soluble target protein. Many of the interactions have also been demonstrated on tissue sections or in vivo, and adherence to the extracellular matrix has been shown to promote bacterial colonization of damaged tissues.

PubMed Disclaimer

MeSH terms

LinkOut - more resources