Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Aug;55(4):903-18.
doi: 10.1016/0306-4522(93)90307-2.

Trophic actions of transforming growth factor alpha on mesencephalic dopaminergic neurons developing in culture

Affiliations

Trophic actions of transforming growth factor alpha on mesencephalic dopaminergic neurons developing in culture

T Alexi et al. Neuroscience. 1993 Aug.

Abstract

Transforming growth factor alpha messenger RNA and protein levels are highest in the striatum, the target area of mesencephalic dopaminergic neurons of the substantia nigra, suggesting a role as a target-derived neurotrophic factor for these cells. To test this hypothesis, we characterized the actions of transforming growth factor alpha on fetal rat dopaminergic neurons in culture. Transforming growth factor alpha promoted dopamine uptake in a dose- and time-dependent manner. Administration of transforming growth factor alpha at the time of plating for 2 h produced a significant increase in dopamine uptake after five days of growth in vitro. As cultures aged they became less responsive to transforming growth factor alpha, such that longer times of exposure were required to elicit a similar, but weaker, response. Dopaminergic cell survival was selectively promoted by transforming growth factor alpha, since there was an increase in the number of tyrosine hydroxylase-immunostained cells without a parallel increase in the total number of neuron-specific enolase-immunopositive cells. Neurite length, branch number and soma area of tyrosine hydroxylase-immunopositive cells also were enhanced by transforming growth factor alpha treatment. Increases in each of the dopaminergic parameters due to transforming growth factor alpha were accompanied by a rise in glial cell number, making it possible that these effects were mediated by this cell population. The neurotrophin antagonist, K252b, failed to inhibit the transforming growth factor alpha-induced increase in dopamine uptake, indicating that transforming growth factor alpha's effects were not mediated by neurotrophin mechanisms. The actions of transforming growth factor alpha on the differentiation of dopaminergic neurons only partially overlapped with those of epidermal growth factor. Thus, while transforming growth factor alpha and epidermal growth factor are believed to share the same receptor they differentially affect dopaminergic cell development in vitro. These results indicate that transforming growth factor alpha is a trophic factor for mesencephalic cells in culture and suggests that transforming growth factor alpha plays a physiological role in the development of these cells in vivo.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources