Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Apr 1;5(4):390-3.
doi: 10.1111/j.1460-9568.1993.tb00506.x.

Potent analgesia induced in rats by combined action at PCP and polyamine recognition sites of the NMDA receptor complex

Affiliations

Potent analgesia induced in rats by combined action at PCP and polyamine recognition sites of the NMDA receptor complex

T J Coderre. Eur J Neurosci. .

Abstract

The present study was performed to examine the analgesic effects of the intrathecal administration of agents acting at various sites in the N-methyl-D-aspartic acid (NMDA) receptor complex on the nociceptive responses to s.c. formalin injection in rats. Both the competitive NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV) and the non-competitive NMDA antagonist dizocilpine maleate (MK-801) produced dose-dependent analgesic effects in the late, but not the early, phase of the formalin test. The polyamine antagonist ifenprodil, and the strychnine-insensitive glycine antagonists DCQX and 7-chlorokynurenic acid, failed to produce any analgesic effects in either the early or the late phase of the formalin test. The analgesic effects of APV were enhanced slightly by combined administration with a non-analgesic dose of glycine, and the analgesic effects of MK-801 were dramatically potentiated by combined administration of a non-analgesic dose of the polyamine spermine. The results indicate that much more potent analgesia can be produced in the formalin test by a combination of open channel blockers (such as MK-801) with agonists acting at the polyamine site, than by a single treatment with antagonists to either glycine allosteric or polyamine sites within the NMDA receptor complex.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources