Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Nov 19;194(4267):796-806.
doi: 10.1126/science.790568.

Structural domains of transfer RNA molecules

Structural domains of transfer RNA molecules

G J Quigley et al. Science. .

Abstract

In this article, we have described various detailed features of the conformation of yeast tRNA(Phe) revealed by recent refinement analysis of x-ray diffraction data at 2.5 A resolution. The gross features of the molecule observed in the unrefined version have been largely confirmed and a number of new features found. The unique role of the ribose 2' hydroxyl groups in maintaining a series of nonhelical conformations in this RNA molecule has become apparent. Many of these features are a direct consequence of the geometry of the ribose phosphate backbone of RNA molecules, and these may also be found in structured regions of other RNA species as well. Special attention has been directed toward two conformational motifs revealed by this analysis. These include the striking similarity between the TpsiC and anticodon hairpin turns in the polynucleotide chain, which are stabilized by the participation of uridine in the U turn. In addition, there is frequent occurrence of an arch conformation in the polynucleotide chian which is stabilized by hydrogen bonds from 2' hydroxyl residues to phosphate groups across the base of the arch. The importance of the 2' hydroxyl interactions in defining tertiary structure is illustrated by the fact that, in the nonhelical regions, almost half of the ribose residues are involved in O2' hydrogen-bonding interactions which stabilize the conformation of the molecule.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources