Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Feb;71(2):454-66.
doi: 10.1152/jn.1994.71.2.454.

Modulation of high-threshold transmission between heart interneurons of the medicinal leech by FMRF-NH2

Affiliations

Modulation of high-threshold transmission between heart interneurons of the medicinal leech by FMRF-NH2

T W Simon et al. J Neurophysiol. 1994 Feb.

Abstract

1. We examined high-threshold synaptic transmission between oscillatory pairs of leech heart interneurons. Inhibitory postsynaptic currents (IPSCs) could be reliably evoked by depolarizing the presynaptic neuron in voltage clamp from a holding potential of -35 mV. At this presynaptic potential, the Ca2+ currents underlying graded transmission are completely inactivated, and we conclude that a high-threshold Ca2+ current is extant in heart interneurons. Further evidence for this was that inhibitory postsynaptic currents were blocked when Co2+ replaced Ca2+ in the saline and thus high-threshold transmission was dependent on the presence of external Ca2+. 2. When IPSCs were evoked by a 200-ms duration voltage step from a holding potential of -35 mV in the presynaptic neuron, the time course of turn-on of the IPSC consisted of a fast (time-to-peak = 17.5 +/- 1.93 (SE) ms [n = 7]) and a slow (time-to-peak = 250 +/- 28.5 ms [n = 8]) component. FMRF-NH2 reduced the amplitude of the fast component but did not affect the slow component. When the presynaptic voltage step was ended the IPSC turned off with a single exponential time course. FMRF-NH2 slowed the time course of turn-off of the IPSC. 3. When IPSCs were evoked by a 1500-ms duration voltage step from a holding potential of -35 mV in the presynaptic neuron, these IPSCs peaked around 300 ms. Following the peak, the IPSC decayed with a single exponential time course. FMRF-NH2 accelerated the time course of this decay. At potentials of 0 mV and +5 mV, FMRF-NH2 produced a significant decrease in the peak current and at potentials of -5 mV and 0 mV, produced a significant decrease in the current integral. 4. High-threshold IPSCs could also be evoked by a spike in the presynaptic neuron. Bath application of 1 microM FMRF-NH2 decreased the amplitude of the spike-evoked IPSC and slowed the time course of its falling phase. 5. We examined the effect of FMRF-NH2 on the quantal synaptic transmission. Bath-application of FMRF-NH2 increased binomial p, the probability of release, and decreased binomial n, the number of units available for release. FMRF-NH2 had no effect on q, the unit size, when calculated from the distributions of PSPs, and increased the coefficient of variation (CV). 6. The lack of a change in q and the increase in CV suggested that FMRF-NH2 acted at a presynaptic location.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources