Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Dec 22;136(1-2):323-8.
doi: 10.1016/0378-1119(93)90488-o.

HIV1 integrase expressed in Escherichia coli from a synthetic gene

Affiliations

HIV1 integrase expressed in Escherichia coli from a synthetic gene

T P Holler et al. Gene. .

Abstract

Human immunodeficiency virus type 1 (HIV1) integrase is cleaved from the gag-pol precursor by the HIV1 protease. The resulting 32-kDa protein is used by the infecting virus to insert a linear, double-stranded DNA copy of its genome, prepared by reverse transcription of viral RNA, into the host cell's chromosomal DNA. In order to achieve high levels of expression, to minimize an internal initiation problem and to facilitate mutagenesis, we have designed and synthesized a gene encoding the integrase from the infectious molecular clone, pNL4-3. Codon usage was optimized for expression in Escherichia coli and unique restriction sites were incorporated throughout the gene. A 905-bp cassette containing a ribosome-binding site, a start codon and the integrase-coding sequence, sandwiched between EcoRI and HindIII sites, was synthesized by overlap extension of nine long synthetic oligodeoxyribonucleotides [90-120 nucleotides (nt)] and subsequent amplification using two primers (28-30 nt). The cassette was subcloned into the vector pKK223-3 for expression under control of a tac promoter. The protein produced from this highly expressed gene has the expected N-terminal sequence and molecular mass, and displays the DNA processing, DNA joining and disintegration activities expected from recombinant integrase. These studies have demonstrated the utility of codon optimization, and lay the groundwork for structure-function studies of HIV1 integrase.

PubMed Disclaimer

LinkOut - more resources