Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1994 Oct;70(4):596-603.
doi: 10.1038/bjc.1994.357.

Oxygen dependence of the cytotoxicity and metabolic activation of 4-alkylamino-5-nitroquinoline bioreductive drugs

Affiliations
Free PMC article
Comparative Study

Oxygen dependence of the cytotoxicity and metabolic activation of 4-alkylamino-5-nitroquinoline bioreductive drugs

B G Siim et al. Br J Cancer. 1994 Oct.
Free PMC article

Abstract

The cytotoxic potency of 4-alkylamino-5-nitroquinoline drugs in AA8 cell cultures is enhanced up to 60-fold under hypoxia, with wide variations in selectivity for hypoxic cells observed for different members of this series. This study uses three representative 5-nitroquinolines to examine whether these differences in hypoxia-selective cytotoxicity are cell line specific, and to explore quantitatively the oxygen dependence of the cytotoxicity and metabolism of these compounds. The parent compound 5NQ, its 5NQ, its 8-methyl analogue (8Me5NQ) and the 8-methylamino analogue (8NHMe-5NQ) each showed similar hypoxic selectivity (ratio of concentration x time for 90% kill for zero versus 20% oxygen of 13-18-, 30-69- and 1.2-1.4-fold respectively in the three cell lines tested (AA8 Chinese hamster ovary, EMT6/Ak mouse mammary tumour and FME human melanoma). The cytotoxicity and metabolism (covalent binding) of radiolabelled 8Me-5NQ was investigated in AA8 cultures over a range of oxygen tensions (0-95%). The oxygen tension in solution required for 50% inhibition of log cell kill or adduct formation observed under anoxia (C50) was 0.01 and 0.02% oxygen respectively, suggesting that bioreductive alkylation is the mechanism of 8Me-5NQ toxicity. The K-value (oxygen concentration for cytotoxic potency equal to the mean of the potencies at zero and infinite oxygen) was similar (0.02% oxygen). Calculations based on measured rate constants for formation of the nitroradical anion of 8Me-5NQ and rates of radical loss through disproportionation or reaction with oxygen, predict a K-value for 8Me-5NQ of 0.025% oxygen, in good agreement with the experimentally determined value. Modelling of cell killing expected by the combination of 8Me-5NQ plus radiation suggested that tumour cells at intermediate oxygen tensions (0.01-1%) will be partially resistant to this treatment, and would limit the use of these 5-nitroquinolines in combination with radiation, unless sufficient drug could be delivered to cause extensive killing in the anoxic compartment.

PubMed Disclaimer

References

    1. Radiother Oncol. 1993 Jan;26(1):45-50 - PubMed
    1. Radiology. 1976 Apr;119(1):217-22 - PubMed
    1. Exp Cell Res. 1977 Feb;104(2):255-62 - PubMed
    1. Cancer Res. 1993 Sep 1;53(17):3992-7 - PubMed
    1. Cancer Res. 1989 Dec 1;49(23):6449-65 - PubMed

Publication types