Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1994 Nov;75(5):870-8.
doi: 10.1161/01.res.75.5.870.

K+ currents and K+ channel mRNA in cultured atrial cardiac myocytes (AT-1 cells)

Affiliations
Free article
Comparative Study

K+ currents and K+ channel mRNA in cultured atrial cardiac myocytes (AT-1 cells)

T Yang et al. Circ Res. 1994 Nov.
Free article

Abstract

Atrial tumor myocytes derived from transgenic mice (AT-1 cells) maintain a well-differentiated cardiac biochemical and histological phenotype. In addition, they beat spontaneously in culture and exhibit long action potentials whose repolarization resembles that observed in native mammalian myocytes. In this study, we identified the major depolarization-activated outward currents in AT-1 cells; also, the presence of mRNAs that encode outwardly conducting ion channels was determined by cloning from an AT-1 cDNA library or by Northern hybridization. Among K+ channel isoforms, Kv2.1, minK, and Kv1.4 were readily detected in tumors and at 1 day in culture. Their abundance remained relatively stable (twofold or less change) after 14 days. The major outward current in AT-1 cells is a delayed rectifier that displays prominent inward rectification, activates rapidly (eg, 182 +/- 27 milliseconds [mean +/- SEM] at + 20 mV, n = 12), exhibits biexponential deactivation kinetics, and is extremely sensitive to the methanesulfonanilide dofetilide (IC50, 12 nmol/L). These characteristics identify this current as IKr, a delayed rectifier observed only in cardiac cells. IKr in AT-1 cells displayed slow inactivation: dofetilide-sensitive deactivating tails were greater after 1-second than after 5-second pulses. When IKr was blocked by > or = 0.5 mumol/L dofetilide, time-independent current was usually recorded (50 of 65 experiments); rapidly inactivating (6 of 65) or slowly inactivating (9 of 65) outward currents were occasionally observed. We conclude that AT-1 cells express mRNAs encoding cardiac K+ channels and display a cardiac electrophysiological phenotype.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Publication types