Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Summer;58(2):67-73.

The effect of age on phosphatidylinositol kinase, phosphatidylinositol phosphate kinase and diacylglycerol kinase activities in rat brain cortex

Affiliations
  • PMID: 7928021

The effect of age on phosphatidylinositol kinase, phosphatidylinositol phosphate kinase and diacylglycerol kinase activities in rat brain cortex

J Bothmer et al. Growth Dev Aging. 1994 Summer.

Abstract

A previous study, in which a lysed fraction was used with endogenous phospholipids as substrate, revealed age-related changes in PA and PIP2 formation but not in PIP formation (Bothmer et al., Neurochem. Int. 21, 223-228, 1992). To rule out the influence of substrate availability in the present study, the effect of age on PI kinase, PIP kinase and DAG kinase activities was studied with exogenous phospholipids as substrate in the cerebral cortex from 8-month-old, 14-month-old and 26-month-old Brown Norway rats. PI kinase activity was predominantly located in a tight membrane-bound protein fraction, DAG kinase activity in cytosolic and loosely membrane-bound protein fractions, and PIP kinase activity was present in all three protein preparations. The effects of age were limited to a small increase in kinase activity in the tight membrane-bound protein fraction in 14-month-old and 26-month-old rats compared to 8-month-old rats, and a 10% decrease in PIP kinase activity in the cytosolic protein fraction in 14-month-old and 26-month-old rats compared to 8-month-old rats. DAG kinase activity showed no age-related changes. In conclusion, one should take care in comparing rat aging with human aging as PI kinase activity shows an age-related decline in human brain cortex (Jolles et al., J. Neurochem. 58, 2326-2329, 1992). Furthermore, previously reported decreases in PA formation rates in rat brain are probably not due to changes in DAG kinase itself but to changes in DAG availability, although further experimental evidence is needed to confirm this conclusion.

PubMed Disclaimer

Substances