Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1994 Oct 28;269(43):26618-21.

The amyloid beta-protein precursor and its mammalian homologues. Evidence for a zinc-modulated heparin-binding superfamily

Affiliations
  • PMID: 7929392
Free article
Comparative Study

The amyloid beta-protein precursor and its mammalian homologues. Evidence for a zinc-modulated heparin-binding superfamily

A I Bush et al. J Biol Chem. .
Free article

Abstract

The Alzheimer beta-amyloid precursor protein (APP) contains an ectodomain zinc binding site that has been reported to modulate the heparin affinity and protease-inhibitory properties of the molecule. This motif, GVEFVCCP, is highly conserved in amyloid precursor-like proteins 1 and 2 (APLP1 and APLP2), as well as in the Drosophila and Caenorhabditis elegans APP-like proteins (APPL and APL-1). To determine whether the function of this domain is preserved in the human APP-like proteins, the effect of zinc in modulating the elution profile of these proteins upon heparin-Sepharose chromatography was studied. Both APLP1 and APLP2 bound heparin-Sepharose and had NaCl elution profiles similar to that of APP. As previously reported for APP, zinc increased the recovery of APLP1 and APLP2 upon heparin-Sepharose chromatography. APP, APLP1, and APLP2 all bind zinc-chelating Sepharose, indicating that the zinc binding motif may be functionally conserved in these proteins. Additionally, APP, APLP1, and APLP2 migrate at higher molecular sizes (approximately 40 kDa) on SDS-polyacrylamide gel electrophoresis than their predicted molecular sizes. We report data that compare the physicochemical properties of APP to its novel APLP homologues and indicate that these molecules behave as a family of zinc-modulated, heparin-binding proteins.

PubMed Disclaimer

Publication types

MeSH terms