Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 May:107 ( Pt 5):1277-87.
doi: 10.1242/jcs.107.5.1277.

A scatter factor-like factor is produced by a metastatic variant of a rat bladder carcinoma cell line

Affiliations

A scatter factor-like factor is produced by a metastatic variant of a rat bladder carcinoma cell line

S Bellusci et al. J Cell Sci. 1994 May.

Abstract

The rat bladder carcinoma epithelial NBT-II cell line undergoes, in vitro, a morphological transition to a fibroblast-like state in the presence of different growth factors. We have selected, in vivo, a metastatic clone, designated M-NBT-II, which has a mesenchymal phenotype and secretes into the culture medium a factor able to dissociate epithelial clusters of NBT-II or MDCK cells. This factor was designated scatter factor-like (SFL) by analogy to the HGF/SF, which has the same dissociating effect in these two cell lines. Here, we show that SFL factor and HGF/SF are different factors: (i) no HGF/SF transcripts could be detected using either specific rat HGF/SF cDNA probes or PCR; (ii) blocking antibodies against rat HGF/SF do not inhibit the SFL activity; and (iii) crude culture medium or partially purified SFL factor-containing fractions do not induce MDCK tubulogenesis, a biological assay that is specific for HGF/SF activity in vitro. We report the partial purification of the SFL factor, based on ion exchange and reverse-phase chromatography. The results indicate that the M-NBT-II metastatic variant secretes a dissociating factor sharing some common biological properties with the HGF/SF, which suggests that the SFL factor is a member of the HGF/SF family and may be involved in tumor progression.

PubMed Disclaimer

Publication types

MeSH terms

Substances