Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1994 Sep 30;242(4):309-20.
doi: 10.1006/jmbi.1994.1582.

The immunoglobulin fold. Structural classification, sequence patterns and common core

Affiliations
Review

The immunoglobulin fold. Structural classification, sequence patterns and common core

P Bork et al. J Mol Biol. .

Abstract

Since the first crystal structure of an immunoglobulin revealed a modular architecture, the characteristic beta-sheet fold of the immunoglobulin domain has been found in many other proteins of diverse biological function. Here, a systematic comparison of 23 Ig domain structures with less than 25% pairwise residue identity was performed using automatic structural alignment and analysis of beta-sheet and loop topology. Sequence consensus patterns were identified for nine distinct families with at most marginal similarity to each other. The analysis reveals a common structural core of only four beta-strands (b, c, e and f), embedded in an antiparallel curled beta-sheet sandwich with a total of three to five additional strands (a, c', c'', d, g) and a characteristic intersheet angle. The variation in the position of the edge strands (a, c', c'', d and g) relative to the common core defines four different topological subtypes that correlate with the length of the intervening sequence between strands c and e, the most variable region in sequence. The switch of strand c' from one sheet to the other in seven-stranded domains appears to result from short c-e segments, rather than being a major structural discriminator. The high degree of structural flexibility outside the common core and the extreme variability of side-chain packing inside the core do not support a protein folding pathway common to all members of the structural class. Mutation rates of immunoglobulin-like domains in different proteins vary considerably. Disulfide bridges, thought to contribute to structural stability, are not necessarily invariant in number and location within a subclass.

PubMed Disclaimer

Substances

LinkOut - more resources