Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1993 Oct;10(2):299-310.
doi: 10.1111/j.1365-2958.1993.tb01956.x.

Deletions of Tn916-like transposons are implicated in tetM-mediated resistance in pathogenic Neisseria

Affiliations
Comparative Study

Deletions of Tn916-like transposons are implicated in tetM-mediated resistance in pathogenic Neisseria

J S Swartley et al. Mol Microbiol. 1993 Oct.

Abstract

Using the tetM-containing conjugative transposon Tn916 as a mutagenesis tool, we identified two distinct classes of transposon insertions in the meningococcal chromosome. Class I insertions have an intact copy of Tn916 that appears to have transposed by a novel recombinational mechanism, similar to the transposition of conjugative transposons in Gram-positive bacteria. Class II insertions were characterized by deletions of Tn916 but preservation of the tetM determinant. In addition, we identified Class II Tn916-like insertions in the naturally occurring 25.2 MDa tetM-containing plasmids of both Neisseria meningitidis and Neisseria gonorrhoeae. The turncated Tn916-like insertions appeared to be present in the same site in these two plasmids; however, the deletions of the transposon were different. Plasmid sequence adjacent to the truncated transposon in the 25.2 MDa plasmids was found in a tetracycline-sensitive N. gonorrhoeae 24.5 MDa conjugative plasmid. These data suggest that the 25.2 MDa plasmids are the result of one or a series of Class II Tn916-like insertions into 24.5 MDa conjugative plasmids. Class II insertions of Tn916-like transposons are implicated in the dissemination of tetM resistance in pathogenic Neisseria.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources