Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Oct;10(2):407-20.

Identification and characterization of stationary phase-inducible genes in Escherichia coli

Affiliations
  • PMID: 7934831

Identification and characterization of stationary phase-inducible genes in Escherichia coli

D Weichart et al. Mol Microbiol. 1993 Oct.

Abstract

During transition into stationary phase a large set of proteins is induced in Escherichia coli. Only a minority of the corresponding genes has been identified so far. Using the lambda placMu system and a plate screen for carbon starvation-induced fusion activity, a series of chromosomal lacZ fusions (csi::lacZ) was isolated. In complex medium these fusions were induced either during late exponential phase or during entry into stationary phase. csi::lacZ expression in minimal media in response to starvation for carbon, nitrogen and phosphate sources and the roles of global regulators such as the alternative sigma factor sigma s (encoded by rpoS), cAMP/CRP and the relA gene product were investigated. The results show that almost every fusion exhibits its own characteristic pattern of expression, suggesting a complex control of stationary phase-inducible genes that involves various combinations of regulatory mechanisms for different genes. All fusions were mapped to the E. coli chromosome. Using fine mapping by Southern hybridization, cloning, sequencing and/or phenotypic analysis, csi-5, csi-17, and csi-18 could be localized in osmY (encoding a periplasmic protein), glpD (aerobic glycerol-3-phosphate dehydrogenase) and glgA (glycogen synthase), respectively. The other fusions seem to specify novel genes now designated csiA through to csiF. csi-17(glpD)::lacZ was shown to produce its own glucose-starvation induction, thus illustrating the intricacies of gene-fusion technology when applied to the study of gene regulation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources