Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jul;11(7):1016-22.
doi: 10.1023/a:1018939521589.

Polystyrene-poly (ethylene glycol) (PS-PEG2000) particles as model systems for site specific drug delivery. 2. The effect of PEG surface density on the in vitro cell interaction and in vivo biodistribution

Affiliations

Polystyrene-poly (ethylene glycol) (PS-PEG2000) particles as model systems for site specific drug delivery. 2. The effect of PEG surface density on the in vitro cell interaction and in vivo biodistribution

S E Dunn et al. Pharm Res. 1994 Jul.

Abstract

The effect of differing densities of poly (ethylene glycol-2000) (PEG2000) at the particle surface of polystyrene-poly (ethylene glycol-2000) (PS-PEG2000) particles was assessed in terms of hydrophobic interaction chromatography (HIC) and the in vitro and in vivo behaviour of the particles. The particles, with different surface densities of PEG, were prepared by varying the copolymerizing reaction of styrene with a PEG macromonomer. There is a clear relationship between the surface density of PEG as determined by X-ray photoelectron spectroscopy and surface hydrophobicity as assessed by hydrophobic interaction chromatography (HIC). Similarly, the interaction of the particles with non-parenchymal liver cells in in vitro studies was shown to decrease as the surface density of PEG increases. The in vivo study investigating the biodistribution of the PS-PEG particles after intravenous injection into rats reveals that a relationship exists between the surface density of PEG and the extent to which the particles remain in the circulation, avoiding recognition by the reticuloendothelial system. Particles with the higher surface densities show increased circulatory times which compared well with data for particles prepared with the surface adsorbed PEO-PPO block copolymer, Poloxamine 908.

PubMed Disclaimer

References

    1. FEBS Lett. 1991 Jun 24;284(2):263-6 - PubMed
    1. Biomaterials. 1987 Mar;8(2):113-7 - PubMed
    1. Am J Physiol. 1970 Apr;218(4):1118-27 - PubMed
    1. Biochim Biophys Acta. 1993 Mar 14;1146(2):157-68 - PubMed
    1. Biochim Biophys Acta. 1989 Sep 18;984(3):384-7 - PubMed

LinkOut - more resources