Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1994 Jun;32(6):639-55.
doi: 10.1016/0041-0101(94)90334-4.

Defensive roles for secondary metabolites from marine sponges and sponge-feeding nudibranchs

Affiliations
Review

Defensive roles for secondary metabolites from marine sponges and sponge-feeding nudibranchs

P Proksch. Toxicon. 1994 Jun.

Abstract

In the marine environment sponges (Porifera) constitute one of the most interesting sources of bioactive natural products. The high frequency of bioactive components in these primitive filter-feeders is interpreted as chemical defence of sponges against environmental stress factors such as predation, overgrowth by fouling organisms or competition for space. The highest incidence of toxic or deterrent sponge metabolites is consequently found in habitats such as coral reefs that are characterized by intense competition and feeding pressure due, for example, to carnivorous fish. Further support for the adaptive significance of sponge constituents is derived from the observation that sponges which are growing exposed are usually more toxic than those growing unexposed. Whereas the chemical defence of sponges seems to be highly effective against most species of fish, a group of shell-less gastropods, the nudibranchs, has specialized on sponges. While feeding on sponges the nudibranchs sequester the effective chemical armoury of their prey, which is subsequently employed for their own protection. Some nudibranchs, however, have become independent of this interspecific flow of natural products and are able to accumulate defensive compounds through de novo synthesis.

PubMed Disclaimer

Publication types