Motion adaptation governs the shape of motion-evoked cortical potentials
- PMID: 7941362
- DOI: 10.1016/0042-6989(94)90111-2
Motion adaptation governs the shape of motion-evoked cortical potentials
Abstract
We recorded visually evoked potentials (VEPs) to motion onset/offset of square-wave gratings (dominant spatial frequency 0.69 c/deg, velocity 4.9 deg/sec, contrast 10%, luminance 15 cd/m2) with three electrode combinations (Oz vs Fz, Oz vs linked ears and parietal vs linked ears). In one experiment (seven subjects), we examined the effect of the duty-cycle of motion vs non-motion (5-80%) on the size of the various motion-evoked components. In another experiment (six subjects, duty-cycle 10%), we examined the effect of motion adaptation on the motion VEP. We observed both a positive VEP component around 110 msec (P1) and a negative component around 180 msec (N200). The amplitude of these components depended on duty-cycle and electrode position: N200 dominated at < or = 20% motion duty-cycle, P1 at > or = 50%; P1 dominated medially, N200 laterally. Motion adaptation enhanced the P1 and reduced the N200 by a factor of 3. Previous controversies regarding the major components of motion-evoked potential may be due to different duty-cycles. The effect of duty-cycle is probably caused by adaptation to the test stimulus; it can be predicted quantitatively by a simple one-parameter model based on the assumption that the VEP amplitude is proportional to the non-adapted proportion of motion-response generators.
Similar articles
-
Similarities and dissimilarities between pattern VEPs and motion VEPs.Doc Ophthalmol. 1998-1999;97(1):67-79. doi: 10.1023/a:1001888618774. Doc Ophthalmol. 1998. PMID: 10710243
-
Motion adaptation in chromatic motion-onset visual evoked potentials.Doc Ophthalmol. 2001 Nov;103(3):229-51. doi: 10.1023/a:1013037101814. Doc Ophthalmol. 2001. PMID: 11824660
-
Parvocellular and magnocellular contributions to visual evoked potentials in humans: stimulation with chromatic and achromatic gratings and apparent motion.J Neurol Sci. 1995 Dec;134(1-2):73-82. doi: 10.1016/0022-510x(95)00222-x. J Neurol Sci. 1995. PMID: 8747847
-
Motion VEPs with simultaneous measurement of perceived velocity.Doc Ophthalmol. 1998-1999;97(2):121-34. doi: 10.1023/a:1002007132500. Doc Ophthalmol. 1998. PMID: 10765966
-
Swimming with and against the stream: does motor adaptation to lateral forces influence visual motion perception?J Neurosci. 2007 Dec 5;27(49):13367-8. doi: 10.1523/JNEUROSCI.4545-07.2007. J Neurosci. 2007. PMID: 18057192 Free PMC article. Review. No abstract available.
Cited by
-
Motion adaptation: net duration matters, not continuousness.Exp Brain Res. 2006 Mar;169(4):461-6. doi: 10.1007/s00221-005-0165-0. Epub 2005 Nov 18. Exp Brain Res. 2006. PMID: 16328303
-
Isolating motion responses in visual evoked potentials by preadapting flicker-sensitive mechanisms.Exp Brain Res. 2003 Aug;151(4):536-41. doi: 10.1007/s00221-003-1509-2. Epub 2003 Jul 8. Exp Brain Res. 2003. PMID: 12851804
-
Early Alzheimer's disease blocks responses to accelerating self-movement.Neurobiol Aging. 2012 Nov;33(11):2551-60. doi: 10.1016/j.neurobiolaging.2011.12.031. Epub 2012 Feb 17. Neurobiol Aging. 2012. PMID: 22341609 Free PMC article.
-
Within-session reproducibility of motion-onset VEPs: effect of adaptation/habituation or fatigue on N2 peak amplitude and latency.Doc Ophthalmol. 2007 Sep;115(2):95-103. doi: 10.1007/s10633-007-9063-z. Epub 2007 May 31. Doc Ophthalmol. 2007. PMID: 17541662
-
Similarities and dissimilarities between pattern VEPs and motion VEPs.Doc Ophthalmol. 1998-1999;97(1):67-79. doi: 10.1023/a:1001888618774. Doc Ophthalmol. 1998. PMID: 10710243
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources