Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Sep;267(3 Pt 1):G465-75.
doi: 10.1152/ajpgi.1994.267.3.G465.

1,25(OH)2 vitamin D3 activates PKC-alpha in Caco-2 cells: a mechanism to limit secosteroid-induced rise in [Ca2+]i

Affiliations

1,25(OH)2 vitamin D3 activates PKC-alpha in Caco-2 cells: a mechanism to limit secosteroid-induced rise in [Ca2+]i

M Bissonnette et al. Am J Physiol. 1994 Sep.

Abstract

Our laboratory recently reported that 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] rapidly increases the breakdown of membrane phosphoinositides, raises intracellular calcium concentration ([Ca2+]i), and translocates protein kinase C (PKC) from the cytosolic to the particulate fraction of Caco-2 cells. In the present experiments, we found that Caco-2 cells contained predominantly the alpha- and zeta-isoforms of PKC, with minimally detectable amounts of PKC-beta and -epsilon by Western blotting. 1,25(OH)2D3 and the PKC activator 12-O-tetradecanoylphorbol 13-acetate (TPA) each caused time-dependent translocations of PKC-alpha, but not PKC-zeta. TPA treatment of these cells for 24 h induced a significant concentration-dependent downregulation of PKC-alpha, but not PKC-zeta. Since PKC inhibits phospholipase C-induced mobilization of Ca2+ in other cells, we examined the effects of staurosporine and H-7, PKC inhibitors, and TPA on 1,25(OH)2D3-stimulated increase in [Ca2+]i. As previously demonstrated by our laboratory, 1,25(OH)2D3 caused a biphasic increase in [Ca2+]i, with an initial elevation (transient phase) followed by a sustained increase (plateau phase). We previously demonstrated that the transient phase is mediated, at least in part, by an increase in inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] stimulated by the secosteroid. Acute pretreatment with staurosporine or H-7 caused a significant stimulation, whereas acute TPA pretreatment caused a significant inhibition of the 1,25(OH)2D3-induced increase in the transient phase of [Ca2+]i. Preincubation of Caco-2 cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxy-methyl ester (BAPTA-AM) abolished both the rise in [Ca2+]i and the increase in particulate-associated PKC-alpha stimulated by 1,25(OH)2D3. Moreover, downregulation of PKC-alpha by chronic TPA treatment significantly augmented the transient phase of the 1,25(OH)2D3-stimulated rise in [Ca2+]i but had no effect on the 1,25(OH)2D3-induced change in Ins(1,4,5)P3 concentration. Furthermore, in these PKC-alpha downregulated cells staurosporine no longer increased the secosteroid-stimulated transient rise in [Ca2+]i. These results indicate that 1,25(OH)2D3, which increases [Ca2+]i and diacylglycerol, activates PKC-alpha, but not PKC-zeta. The alpha-isoform, in turn, limits the secosteroid-stimulated rise in [Ca2+]i, at a step distal to Ins(1,4,5)P3 accumulation in Caco-2 cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources