Cyclic nucleotide phosphodiesterase isoenzymes in guinea-pig tracheal muscle and bronchorelaxation by alkylxanthines
- PMID: 7945415
- DOI: 10.1016/0006-2952(94)90159-7
Cyclic nucleotide phosphodiesterase isoenzymes in guinea-pig tracheal muscle and bronchorelaxation by alkylxanthines
Abstract
In this study the phosphodiesterase (PDE) isoenzymes in guinea-pig trachealis smooth muscle were separated by DEAE-Sepharose anion exchange chromatography, identified, and characterized. Furthermore the effect of theophylline and 1-n-butyl-3-n-propylxanthine (BPX) on the isolated PDE isoenzymes and on their tracheal relaxant effect were investigated and compared with the nonxanthine PDE inhibitors amrinone and Ro 20-1724. We identified five distinct isoenzymes in guinea-pig tracheal muscle; calcium/calmodulin-stimulated cyclic AMP PDE (PDE I), cyclic GMP-stimulated cyclic AMP PDE (PDE II), cyclic GMP-inhibited and amrinone-sensitive cyclic AMP PDE (PDE III), cyclic AMP-specific and Ro 20-1724-sensitive PDE (PDE IV), and cyclic GMP-specific PDE (PDE V). BPX strongly inhibited the PDE IV isoenzyme with high selectivity, while the inhibitory effect of theophylline was weak. The PDE IV inhibitors BPX and Ro 20-1724 synergistically increased the relaxant effect of the beta 2-adrenoceptor agonist salbutamol in carbachol-contracted trachea much more strongly than theophylline. In contrast, amrinone, a PDE III inhibitor, hardly influenced the relaxant effect of salbutamol, suggesting that the PDE IV isoenzyme is functionally associated with beta 2-adrenoceptors in guinea-pig trachea and that inhibition of this enzyme potentiates the ability of salbutamol to increase the intracellular cyclic AMP content. These results indicate that the PDE IV isoenzyme plays a significant role in alkylxanthine-mediated relaxation of guinea-pig trachea.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials