Analysis, classification, and coding of multielectrode spike trains with hidden Markov models
- PMID: 7948227
- DOI: 10.1007/BF00239623
Analysis, classification, and coding of multielectrode spike trains with hidden Markov models
Abstract
It is shown that hidden Markov models (HMMs) are a powerful tool in the analysis of multielectrode data. This is demonstrated for a 30-electrode measurement of neuronal spike activity in the monkey's visual cortex during the application of different visual stimuli. HMMs with optimized parameters code the information contained in the spatiotemporal discharge patterns as a probabilistic function of a Markov process and thus provide abstract dynamical models of the pattern-generating process. We compare HMMs obtained from vector-quantized data with models in which parametrized output processes such as multivariate Poisson or binomial distributions are assumed. In the latter cases the visual stimuli are recognized at rates of more than 90% from the neuronal spike patterns. An analysis of the models obtained reveals important aspects of the coding of information in the brain. For example, we identify relevant time scales and characterize the degree and nature of the spatiotemporal variations on these scales.
Similar articles
-
Extracting state transition dynamics from multiple spike trains using hidden Markov models with correlated poisson distribution.Neural Comput. 2010 Sep 1;22(9):2369-89. doi: 10.1162/neco.2010.08-08-838. Neural Comput. 2010. PMID: 20337539
-
Inferring spike trains from local field potentials.J Neurophysiol. 2008 Mar;99(3):1461-76. doi: 10.1152/jn.00919.2007. Epub 2007 Dec 26. J Neurophysiol. 2008. PMID: 18160425
-
Spline- and wavelet-based models of neural activity in response to natural visual stimulation.Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4611-4. doi: 10.1109/EMBC.2012.6346994. Annu Int Conf IEEE Eng Med Biol Soc. 2012. PMID: 23366955
-
Recognizing the visual stimulus from neuronal discharges.Trends Neurosci. 1991 Jul;14(7):282-6. doi: 10.1016/0166-2236(91)90138-k. Trends Neurosci. 1991. PMID: 1719674 Review.
-
Efficient coding of natural images.Sheng Li Xue Bao. 2011 Oct 25;63(5):463-71. Sheng Li Xue Bao. 2011. PMID: 22002237 Review.
Cited by
-
Attractor-state itinerancy in neural circuits with synaptic depression.J Math Neurosci. 2020 Sep 11;10(1):15. doi: 10.1186/s13408-020-00093-w. J Math Neurosci. 2020. PMID: 32915327 Free PMC article.
-
A nonparametric Bayesian alternative to spike sorting.J Neurosci Methods. 2008 Aug 15;173(1):1-12. doi: 10.1016/j.jneumeth.2008.04.030. Epub 2008 May 16. J Neurosci Methods. 2008. PMID: 18602697 Free PMC article.
-
Dynamic alignment models for neural coding.PLoS Comput Biol. 2014 Mar 13;10(3):e1003508. doi: 10.1371/journal.pcbi.1003508. eCollection 2014 Mar. PLoS Comput Biol. 2014. PMID: 24625448 Free PMC article.
-
Timescales of multineuronal activity patterns reflect temporal structure of visual stimuli.PLoS One. 2011 Feb 8;6(2):e16758. doi: 10.1371/journal.pone.0016758. PLoS One. 2011. PMID: 21346812 Free PMC article.
-
Uncovering temporal structure in hippocampal output patterns.Elife. 2018 Jun 5;7:e34467. doi: 10.7554/eLife.34467. Elife. 2018. PMID: 29869611 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Other Literature Sources