Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1994 Nov;90(5 Pt 2):II328-38.

Warm and cold blood cardioplegia. Comparison of myocardial function and metabolism using 31p magnetic resonance spectroscopy

Affiliations
  • PMID: 7955275
Comparative Study

Warm and cold blood cardioplegia. Comparison of myocardial function and metabolism using 31p magnetic resonance spectroscopy

M B Cannon et al. Circulation. 1994 Nov.

Abstract

Background: Standard myocardial protection during cardiac surgery uses hypothermic arrest, but warm heart surgery, recently introduced, is now used in many centers. We hypothesized that warm continuous blood cardioplegia (WCBC) would provide better myocardial preservation than cold continuous blood cardioplegia (CCBC).

Methods and results: In isolated cross-perfused canine hearts, left ventricular (LV) function and myocardial O2 consumption (MVO2) were measured at constant LV volume, coronary perfusion pressure, and heart rate before and after 75 minutes of arrest at 37 degrees C or 10 degrees C. Metabolism was evaluated by 31P nuclear magnetic resonance spectroscopy. LV resting tone increased transiently after arrest by CCBC but not WCBC (38 +/- 3.9 versus 2.9 +/- 0.5 mm Hg, P < .0005). Myocardial ATP changed over time differently in the groups (P < .001), declining at the outset of CCBC and returning to control levels during the recovery period after CCBC or WCBC. Intracellular pH rose from 7.17 +/- 0.03 to 7.85 +/- 0.05 during CCBC (P < .0005 versus WCBC). MVO2 declined dramatically during arrest at either temperature but to a lower value during CCBC (P < .0005). LV pressure recovered to 86.1 +/- 5.1% of its prearrest value after CCBC and to 97.2 +/- 7.8% following WCBC (P = NS). After CCBC but not WCBC, there were small but significant increases in LV end-diastolic pressure (by 1.3 mm Hg, P < .05) and in the LV relaxation constant, tau (from 37.3 +/- 1.5 to 42.3 +/- 2.4 milliseconds, P < .05).

Conclusions: The increase in intracellular pH during CCBC is largely accounted for by physicochemical factors. Group differences in ATP over time may be related to rapid cooling contracture during CCBC. The data suggest that CCBC mildly impairs LV function but that WCBC preserves function and metabolism at or near prearrest levels.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources