Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Nov 1;70(1):33-8.
doi: 10.1111/j.1432-1033.1976.tb10952.x.

Interaction of substrate analogues with Escherichia coli DNA-dependent RNA polymerase

Free article

Interaction of substrate analogues with Escherichia coli DNA-dependent RNA polymerase

V W Armstrong et al. Eur J Biochem. .
Free article

Abstract

The inhibition of RNA polymerase with ATP and UTP analogues modified in the phosphate and ribose moieties has been investigated. 1. Modification of the terminal phosphate with a loss of the negative charge [adenosine 5'-(3-O-methyl)triphosphate, Ki = 1.75 mM] substantially weakens the binding ability of these analogues to the enzyme whereas modification with retention of the charge is not so detrimental [adenosine tetraphosphate, Ki = 0.17 mM]. 2. 2'-Modified analogues are only weak competitive inhibitors [2'-amino-2'-deoxyadenosine 5'-triphosphate, Ki = 2.3 mM] of their corresponding substrates [ATP, Km = 0.07 mM] whereas 3'-modified analogues are extremely potent in their inhibition [3'-amino-3'-deoxyadenosine 5'-triphosphate, Ki = 2.3 muM]. 3. A difference was observed in the inhibition of the elongation step of RNA polymerase by ATP and UTP analogues. Thus ATP analogues showed a strong binding to the CT form of the poly[d(A-T)] ternary complex and only a weak binding to the CA form. UTP analogues, on the other hand, showed a similar binding to both forms of the complex.

PubMed Disclaimer

LinkOut - more resources