Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jul;72(1):475-8.
doi: 10.1152/jn.1994.72.1.475.

Ca(2+)-dependent Cl- conductance in taste cells from Necturus

Affiliations

Ca(2+)-dependent Cl- conductance in taste cells from Necturus

R Taylor et al. J Neurophysiol. 1994 Jul.

Abstract

1. Taste responses adapt to a constant chemical stimulus. The present study describes a new ionic conductance in taste cells--a Ca(2+)-dependent anion conductance that may explain taste adaptation. 2. Patch-clamp recordings were made on isolated Necturus taste cells or on taste cells in lingual slices. When Na+ and K+ currents were eliminated with tetrodotoxin (TTX) and tetraethyl-ammonium (TEA) in the bath and replacing K+ with N-methyl-D-glucamine (NMDG+) in the pipette, Ca2+ currents were followed by prolonged outward currents. Outward current was abolished when Ca2+ was substituted with Ba2+ or when Cl- was replaced with large organic anions (methanesulfonate, isethionate, or ascorbate). 3. The outward, Ca-dependent current was reduced by certain agents that block Cl- conductances in other tissues, namely 4-acet-amido-4-isothiocyanostilbene-2,2-disulfonic acid (SITS) and 4,4-diisothiocyanostilbene-2,2-disulfonic acid (DIDS). However, other Cl- channel blockers--9-AC, furosemide and an antibody to Cl channels-had little or no specific effect on the Ca-dependent outward current in Necturus taste cells. 4. We postulate that the biological action of this Ca-dependent anion conductance in situ is to terminate depolarizing receptor potentials, even during maintained chemostimulation, thereby playing an important role in chemosensory adaptation and modulation of impulse discharge patterns in taste buds.

PubMed Disclaimer

Publication types

LinkOut - more resources