Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Aug 1;478 Pt 3(Pt 3):483-91.
doi: 10.1113/jphysiol.1994.sp020267.

Activation of ATP-sensitive potassium currents in guinea-pig gall-bladder smooth muscle by the neuropeptide CGRP

Affiliations

Activation of ATP-sensitive potassium currents in guinea-pig gall-bladder smooth muscle by the neuropeptide CGRP

L Zhang et al. J Physiol. .

Abstract

1. The actions of a neuroactive peptide, calcitonin gene-related peptide (CGRP), and the ATP-sensitive potassium (K+ATP) channel activator lemakalim on guinea-pig gall-bladder smooth muscle cells were investigated using intracellular recording from intact preparations and whole-cell patch clamp recording from acutely dissociated myocytes. 2. CGRP and lemakalim caused a glibenclamide-sensitive hyperpolarization of the plasma membrane of intact cells with an associated suppression of spontaneous action potentials. 3. In isolated smooth muscle cells, CGRP (10 nM) and lemakalim (10 microM) activated currents that were glibenclamide sensitive, voltage independent and potassium selective. 4. External TEA+ at 1.0 and 10.0 mM inhibited glibenclamide-sensitive, CGRP-activated currents by 3.8 and 66.5%, respectively. 5. Increases in the intracellular ATP concentration from 0.1 to 5.0 mM reduced the glibenclamide-sensitive potassium current in the presence of CGRP (10 nM) or lemakalim (10 microM) by > 60%. The increase in the intracellular ATP also reduced the steady-state glibenclamide-sensitive current by > 80%. 6. These findings indicate that CGRP activates K+ATP channels to hyperpolarize the membrane of gall-bladder smooth muscle cells. This hyperpolarization may be an important mechanism underlying the relaxant effects of CGRP on the gall-bladder.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Pflugers Arch. 1981 Aug;391(2):85-100 - PubMed
    1. J Physiol. 1994 Feb 15;475(1):9-13 - PubMed
    1. Nature. 1984 Sep 20-26;311(5983):271-3 - PubMed
    1. Nature. 1985 Aug 22-28;316(6030):736-8 - PubMed
    1. Cell Tissue Res. 1988 Jul;253(1):145-50 - PubMed

Publication types

MeSH terms

LinkOut - more resources