Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Nov 22;91(24):11477-81.
doi: 10.1073/pnas.91.24.11477.

Rapamycin selectively inhibits translation of mRNAs encoding elongation factors and ribosomal proteins

Affiliations

Rapamycin selectively inhibits translation of mRNAs encoding elongation factors and ribosomal proteins

N Terada et al. Proc Natl Acad Sci U S A. .

Abstract

The immunosuppressant rapamycin (RAP) has been demonstrated to specifically inhibit the activity of p70 S6 kinase (p70s6k) and subsequent phosphorylation of ribosomal S6 protein in mammalian cells. Addition of RAP to proliferating lymphoid cells resulted in inhibition of protein synthesis before any changes in the rate of cell proliferation. When the cellular composition of proteins was examined by gel electrophoresis, RAP dramatically inhibited synthesis of selective proteins, particularly elongation factor 2 (eEF-2). The inhibition of eEF-2 synthesis by RAP was at the translational level. Further, RAP inhibited the polysomal association of mRNAs encoding not only eEF-2 but also elongation factor 1-alpha and ribosomal proteins without affecting mRNA translation of any of a number of nonribosomal proteins. Since levels of activity of p70s6k are correlated with the rate of biosynthesis of eEF-2, p70s6k might be involved in coordinate translational regulation of ribosomal protein mRNAs in higher eukaryotes, which have a conserved sequence at their 5' end. Specific inhibition of ribosomal protein synthesis likely explains the differential antiproliferative effect of RAP on proliferating and mitogen-activated quiescent cells.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Mol Cell Biol. 1982 Jun;2(6):685-93 - PubMed
    1. J Biol Chem. 1993 Jun 5;268(16):12062-8 - PubMed
    1. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7939-43 - PubMed
    1. Proc Natl Acad Sci U S A. 1986 Jul;83(14):4978-82 - PubMed
    1. Mol Cell Biol. 1987 Feb;7(2):687-97 - PubMed

Publication types

MeSH terms

LinkOut - more resources