Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jul;38(7):1620-7.
doi: 10.1128/AAC.38.7.1620.

Localization of azithromycin in Toxoplasma gondii-infected cells

Affiliations

Localization of azithromycin in Toxoplasma gondii-infected cells

J C Schwab et al. Antimicrob Agents Chemother. 1994 Jul.

Abstract

Agents effective against intracellular pathogens must enter infected cells, crossing vacuolar membranes surrounding the organisms and then penetrating into the microbe and localizing to the microbial target site. We have characterized these parameters for azithromycin entry into Toxoplasma gondii-infected Chinese hamster ovary cells and murine macrophage-like J774 cells. Azithromycin uptake into infected host cells was concentrative and was dependent upon proton gradients. Subcellular fractionation of azithromycin-loaded infected CHO cells demonstrated > 95% intracellular drug in host cell lysosomes and cytosol, with < 5% associated with the parasite. Uptake of azithromycin into the T. gondii vacuole increased if parasites were coated with antibody prior to internalization by murine J774 cells, conditions which result in the formation of acidified phagolysosomes. No redistribution or retention of azithromycin in the parasite was observed when drug efflux from antibiotic-loaded infected CHO cells was monitored. Azithromycin entry into extracellular T. gondii was concentrative, was temperature and pH dependent, and was not different when azithromycin-sensitive and -resistant parasites were compared. These results demonstrate that azithromycin concentrates primarily in acidified compartments in parasites and host cells. The high concentration of azithromycin within these compartments may not be biologically relevant to inhibition of intracellular parasite growth by this agent.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Antimicrob Chemother. 1990 Oct;26 Suppl B:27-39 - PubMed
    1. Exp Parasitol. 1990 Nov;71(4):452-62 - PubMed
    1. Antimicrob Agents Chemother. 1992 May;36(5):1091-6 - PubMed
    1. Antimicrob Agents Chemother. 1992 May;36(5):997-1001 - PubMed
    1. Clin Infect Dis. 1992 Aug;15(2):211-22 - PubMed

Publication types

LinkOut - more resources