Electrophysiological and biochemical effects following single doses of organophosphates in the mouse
- PMID: 7979963
- DOI: 10.1007/s002040050097
Electrophysiological and biochemical effects following single doses of organophosphates in the mouse
Abstract
Single doses of organophosphates (mipafox or ecothiopate) were given subcutaneously to mice. At intervals up to 77 days after dosing animals were killed and muscle action potentials and endplate potentials were recorded intracellularly in mouse phrenic-nerve/hemidiaphragm preparations. Activities of acetylcholinesterase and neuropathy target esterase in brain and acetylcholinesterase in diaphragm were also measured. Mipafox (0.11 mmol/kg), a neurotoxic organophosphate, produced an increase in prejunctional jitter (i.e. the variabilities of the latencies) of endplate potentials. This increase began 14-21 days after administration and lasted more than 23 days. No clinical signs of neuropathy were observed during this study. Mipafox also produced an increase in postjunctional (muscle action potential) jitter. Mipafox inhibited brain and diaphragm acetylcholinesterase and brain neuropathy target esterase. By comparison, a non-neurotoxic organophosphate, ecothiopate (0.5 mumol/kg), was a potent inhibitor of diaphragm acetylcholinesterase and produced a large increase in postjunctional jitter but ecothiopate did not inhibit brain neuropathy target esterase and had no effect on prejunctional jitter. Doses were chosen so that the inhibition of diaphragm acetylcholinesterase by each of the two organophosphates was similar. It is concluded that the neurotoxic organophosphate, mipafox, produced measurable changes in nerve function. These long-term changes may represent a new phenomenon, unrelated to the classical organophosphate induced delayed neuropathy. Alternatively, they may represent a neuropathic process which precedes or is below the threshold for clinical signs.
Similar articles
-
Effects of multiple doses of organophosphates on evoked potentials in mouse diaphragm.Hum Exp Toxicol. 1997 Feb;16(2):72-8. doi: 10.1177/096032719701600202. Hum Exp Toxicol. 1997. PMID: 9051411
-
A comparison of the electrophysiological effects of two organophosphates, mipafox and ecothiopate, on mouse limb muscles.Toxicol Appl Pharmacol. 1998 Jun;150(2):350-60. doi: 10.1006/taap.1998.8432. Toxicol Appl Pharmacol. 1998. PMID: 9653066
-
Comparative studies of two organophosphorus compounds in the mouse.Toxicol Lett. 1995 Nov;81(1):45-53. doi: 10.1016/0378-4274(95)03401-3. Toxicol Lett. 1995. PMID: 8525498
-
Promotion of organophosphate induced delayed polyneuropathy by certain esterase inhibitors.Chem Biol Interact. 1999 May 14;119-120:519-24. doi: 10.1016/s0009-2797(99)00066-6. Chem Biol Interact. 1999. PMID: 10421491 Review.
-
Interactions between neuropathy target esterase and its inhibitors and the development of polyneuropathy.Toxicol Appl Pharmacol. 1993 Oct;122(2):165-71. doi: 10.1006/taap.1993.1184. Toxicol Appl Pharmacol. 1993. PMID: 8211998 Review.
Cited by
-
The Future of Neurotoxicology: A Neuroelectrophysiological Viewpoint.Front Toxicol. 2021 Dec 14;3(729788):1. doi: 10.3389/ftox.2021.729788. Front Toxicol. 2021. PMID: 34966904 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources