The structural and functional diversity of dystrophin
- PMID: 7981747
- DOI: 10.1038/ng0493-283
The structural and functional diversity of dystrophin
Abstract
Duchenne and Becker muscular dystrophies are caused by defects of the dystrophin gene. Expression of this large X-linked gene is under elaborate transcriptional and splicing control. At least five independent promoters specify the transcription of their respective alternative first exons in a cell-specific and developmentally controlled manner. Three promoters express full-length dystrophin, while two promoters near the C terminus express the last domains in a mutually exclusive manner. Six exons of the C terminus are alternatively spliced, giving rise to several alternative forms. Genetic, biochemical and anatomical studies of dystrophin suggest that a number of distinct functions are subserved by its great structural diversity. Extensive studies of dystrophin may lead to an understanding of the cause and perhaps a rational treatment for muscular dystrophy.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical