Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Aug;16(2):71-80.
doi: 10.1016/0143-4160(94)90002-7.

Ca2+ stores in insulin-secreting cells: lack of effect of cADP ribose

Affiliations

Ca2+ stores in insulin-secreting cells: lack of effect of cADP ribose

G A Rutter et al. Cell Calcium. 1994 Aug.

Abstract

Ca2+ stores were examined in several insulin secreting cell types by measuring uptake and release of Ca2+ by permeabilised cells. In pancreatic islet cells or INS-1 cells, < 20% of the ATP-dependent, thapsigargin-sensitive Ca2+ pool could be released by saturating concentrations of inositol (1,4,5)P3 (InsP3). InsP3 released > 60% of the thapsigargin-sensitive Ca2+ pool in RINm5F cells. The total Ca2+ content of the thapsigargin-sensitive pool was similar in each of these cell types. Neither cADP ribose (cADPR; 1 microM) nor caffeine (10 mM) caused significant Ca2+ release from any of the permeabilised insulin-secreting cell preparations. ATP elicited similar increases in intracellular Ca2+ concentration ([Ca2+]i) in single, living INS-1 and RINm5F cells, and similar fold increases in InsP3 levels in cell populations. The Ca2+ ATPase inhibitor thapsigargin, added after ATP, caused smaller [Ca2+]i increases in RINm5F than in INS-1 cells. This is consistent with the presence of a smaller InsP3-sensitive Ca2+ pool in living INS-1 cells. The data indicate that InsP3 receptors are present in only a small subfraction of the Ca2+ ATPase-containing Ca2+ stores in INS-1 and pancreatic beta-cells, and that cADP ribose/caffeine-sensitive Ca(2+)-induced Ca2+ release channels may be entirely absent from this endocrine cell type.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources