Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Nov;12(6):822-33.
doi: 10.1002/jor.1100120610.

Estimation of material properties in the equine metacarpus with use of quantitative computed tomography

Affiliations

Estimation of material properties in the equine metacarpus with use of quantitative computed tomography

C M Les et al. J Orthop Res. 1994 Nov.

Abstract

The purpose of this study was to investigate the relationships between data obtained from quantitative computed tomography and mechanical properties in the equine metacarpus, as measured in vitro in bone specimens. Three hundred and fifty-five bone specimens from the metacarpi of 10 horses were machined into right cylinders aligned with the long axis of the bone. A computed tomographic scan of the specimens, along with a Cann-Genant K2HPO4 calibration standard, was obtained. The specimens then were compressed to failure, and the elastic modulus, yield stress, yield strain, strain energy density at yield, ultimate stress, ultimate strain, and strain energy density at ultimate failure were calculated. The specimens were dried and ashed. Quantitative computed tomography-derived K2HPO4 equivalent density proved to be an excellent estimator (r2 > 0.9) of elastic modulus, yield stress, ultimate stress, wet density, dry density, and ash density; a moderately good estimator (0.4 < r2 < 0.9) of strain energy density at yield and at ultimate failure; and a poor estimator (r2 < 0.2) of yield strain and ultimate strain. It was concluded that the relationships between quantitative computed tomography data and mechanical properties of the equine metacarpus were strong enough to justify the use of these data in automated finite element modeling.

PubMed Disclaimer

Publication types